Disease Name:

ARGINASE DEFICIENCY
(ARGINASE DEFICIENCY; HYPERARGININEMIA)

Classification:

Urea Cycle Defect

Inheritance:

Autosomal recessive

Population Incidence:

1:300,000 births

Ethnic Incidence:

No known population at increased risk

Gene & Location:

A1 gene on 6q23

Common Mutation:

None- more than 20 mutations identified

OMIM #

*207800

Symptom Onset:

Symptoms begin in first year of life.

Symptoms:

Infants present with irritability, poor feeding, vomiting and failure to thrive. Typically exhibit neurologic symptoms clumsiness, toe-walking by age 2-3 years, progressing to spastic quadriplegia, seizures, psychomotor retardation, hyperactivity, mental retardation and growth failure. There is considerable genetic heterogeneity. A few cases have presented at birth with cholestatic jaundice, liver failure and death. There may be microcephaly especially if untreated. Growth may be less than the 3rd percentile, weight relatively preserved

Physical Findings:

No dysmorphisms.

Treatment:

The mainstay is natural protein restriction, arginine-free amino acid supplements and sodium benzoate or phenylbutyrate that generally normalize the arginine levels. As the body makes most of its arginine de novo, dietary restriction must be monitored closely. Phenylbutyrate or benzoate keep ammonia under control and provide an additional nitrogen disposal system.

Natural History without treatment:

Progressive neurological deterioration with episodes of hyperammonemia and coma.

Natural History with treatment:

Treatment prior to symptoms in those ascertained because of prior affected siblings have normal development, and those treated early in the course of the disease appear to have some recovery of functioning. For those detected on newborn screening, follow-up data is not available.
The enzyme involved is liver arginase. It converts arginine to urea and ornithine in the urea cycle to dispose of excess nitrogen. Urea genesis continues and severe hyperammonemia seen in other UCD is usually prevented by the up-regulation of the kidney arginase isomer, A11.

MS/MS profile: Arginine- elevated
Citrulline-elevated

Prenatal testing: Testing by cordocentesis is possible; enzyme analysis is only possible on fetal red blood cells- no affected individuals have been identified in this manner, but it has been done and identified unaffected individuals.

References:

36. OMIM- Online Mendelian Inheritance in Man; ARGININEMIA- *207800.*

47. Summar M, Tuchman M. “Urea Cycle Disorders Overview”, www.geneclinics.org

